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“Writing b = b — @, an gpproximate solution to this equa-
tion is ;

kh ~ qr -+ (h?/Sqmab)[88 + 4(n — 1)2 — 1]

g=123 ... (16)
For an infinite plate of thickness 4, a,b = « and k% = ¢,
g = 1,2,3 ..., which would be the plane-wave solution for an

orthotropic plate.

The forementioned approximate formulas (14) and (16)
have been checked by comparisons with the exact solutions,
and the results are found to be accurate within 5%, for values
of 6 up to L. :
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Introduction

ET fi(t) be a function of time which is defined and con-

tinuous and satisfies all hypotheses of the ergodic
theorem® on — o < ¢ < 4+ . ..Choose a finite record, say
— T £t £+ T, and let fi(f) satisfy the quasi-ergodic
hypothesis® on —7 to 47. The purpose of this paper is to
deduce a relationship between error € and maximum time lag
T, in the digital computation of the autocorrelation function
of fi(t) over —T < ¢t < T. Tt thus will be demonstrated that
the maximum time lag 7, should not exceed 5 to 10% of the
total time record, as suggested by Blackman and Tukey.!
Details of the analysis that follows can be found in Ref. 2.

Analysis of the Problem

The unnormalized autocorrelation function of fi(f) can be
defined by the equation

ECER T EACEACRE A

where 7 is the time lag.
If only a finite record is available, then Ay (7) is approxi-
mated by

v = o [T R ORCED )

A typical graph of f1(f) and fi(t -+ 7) is shown in Fig. 1.
Define the integrand of Eq. (2) as

F@t) = filt) fit + 7) ®3)

A typical graph of F(f) is shown in Fig. 2,

To approximate digitally 4y; (7) from Eq. (2), divide the
interval — T <t < T — 7into K — m equispaced intervals,
where m is a positive integer such that

r = m2T/K) (4)

Also note that each of the equispaced subintervals in Fig. 2 is
of length ‘ ‘

At=2T/(K—m) " 0<m<K (5
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Fig. 2 Graph of fi(¢) fi(t + 1)

Without loss of generality, define

m = [K0] 0<£o<1 (6)

where [K 8] means the greatest integer in K 6.
The area A; under F(t) over {; <t < t;11 can be described
by the inequality

Ft) At < Ay < Fln) At ™

Rearranging inequality (7) slightly and summing over — T
<t €T — 7gives

K—m—1
0 < [A; — F(t) At} <
i=0
K—m—1
Z:O [Fti) — F(t)] AL (8)

In inequality (8), let

K—m—1
S = Z:O [Fti) — F(t)]
= [F(t) — Ft)] + [F(t;) — F(tp] + ...+
[Fltx—ma) — Fltx-m-2)] +
[Ftgem) — Fltg_m-1)]
Then

8 = Fltxk—m) — F(t) )

Substitute Eqgs. (5) and (9) into inequality (8), and then in-
troduce the factor 1/27 to get the following inequality:

0 < L3V 1L - P s
< 5m i i) At] <
2T <o

Pt = FD) (1) a0

where F(t,) = F(—T) from Fig. 2.

Application of the fundamental theorem of integral calculus
to Eq. (10) will yield an integral expression for Ay (7) on
—~T <t < T— 7. Ameasure of the error in the approxima-
tion of Ay () is given by inequality (10). Thus

e = [[Fltx—n) — F(=D)11/(K — m)]| 11

Let ¢ be the maximum value of | [F(tx—n) — F(—T)1] for
all 0 < m < K, and then

e <c/(K—m) (12)
From Eq. (4)
e (r) < ¢/[KQ — 7/27)] (13)

Inequality (13) defines an error region as shown in Fig. 3.
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Fig. 3 Graph of
error ¢ vs time lag r

From inequality (13), it is evident that for r; < 7
6(71) < G(Tz) (14)

Now if 7; and 75 are the maximum values of 7 in two separate
autocorrelation computations for the same f; (f), inequality
(14) states that the greater the maximum time lag, the more
error is introduced into the final results.

Numerical Example

In conjunction with inequalities (13) and (14), the effect
of increasing the maximum time lag 7 now will be demon-
strated. Thus, let 7 be 109, of the total time record on
—T <t £ T and 7, be 509, of the same time record. From
(13), for r; = 0.2T

2€(0.2T) < ¢/K
and for 7, = T
$e(T) < ¢/K
From these inequalities, it follows that
[%5e(0.2T)]- [-2/e(T)} < — 1
and from (14)
€(0.2T) < €(T) < 2e(0.2T) (15)

Since the error introduced by letting the maximum time
lag 7 be 4 the data record can be almost twice the error in-
troduced by letting the maximum time lag = be {4; the data
record, it is concluded that the maximum lag in digitally
computing the autocorrelation function should not exceed
109, of the total data record.
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Introduction

GRAVITATIONALLY oriented satellite executes free
rotational oscillations about its mass center at either of
two distinet frequencies determined by the mass distribu-
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tion.2 Since both frequencies are not appreciably greater
than the orbital frequency, these are also comparable to the:
natural frequency of an orbital perturbation. A calculation.
is' presented which shows that the two types of motion,
although not dynamically coupled, nevertheless do interact.
Tt is demonstrated that orbital perturbations serve to.excite .
the low-frequency mode of rotary oscillation and that, for.
orbits of small eccentricity, this occurs at a near-resonant
condition.

Stability of Satellite Orbits

Circular orbits are shown in treatises on dynamics to be
stable for a class of inverse-power attraction laws which
includes Newtonian gravitation. It is shown here first that
periodic oscillation about the basic orbit also occurs for non-
circular orbits in an inverse-square force field, by considering a
small perturbation on an arbitrary ‘“‘undisturbed’ orbit. If
Ro(t) and ¥(¢) denote polar coordinates that locate the mass

“ center of the satellite in its basic undisturbed orbit, and

r*(t), 0'(t) represent the corresponding perturbation quantities,
then the “linearized”” equations of perturbed motion are

r! — R + 9% = (2G/Re®)r’ (1)
and
(297" + Rf")Ro = 1 (2)

where Ry and & satisfy the equations for the basic orbit, dots
denote time differentiation, @ is the constant of earth gravita-
tion, and % is an integration constant. Powers and products
of disturbance quantities have been neglected systematically
in Eqs. (1) and (2), so that these form a system of linear
ordinary differential equations. These govern motion of
satellite mass center and thus are unaffected by rotary oscilla-
tions about that point. Hence they can be analyzed by
themselves, and the characteristics of the motion are de-
termined by eliminating the angular variable ', leaving

54 (282 + QE/Ry) — (Be*/RA) ' = dn/Ry . (3)

Only for circular orbits are the coefficient and right-hand side
both constants, and evaluation of the total energy of the
motion E then leads to the equation of the harmonic oscillator
at frequency equal to the orbital frequency. Thus, orbital
perturbations oceur at precisely the rate of 1 eycle/orbit for
circular orbits. In the more general case, the coeflicients
are not constant and the motion is not simple harmonie, but
the form of the equation shows that, for orbits of small
eccentricity, the “instantaneous” frequencies of orbital
perturbations

wo = [20% + (QE/Ry — Re*/Re®) V2 4)

are not much different from 1 cycle/orbit. Equations (1)
and (2) indicate a 90° phase lag between ' and 8’, which
will be seen below to have a counterpart in the rotary motions.
For simplicity, only circular orbits will be considered hence-
forth. s

Rotational Oscillations about Mass Center (Librations)

Gravity-gradient satellite dynamic characteristics are
examined by computing the total moment of momentum of
the satellite with respeet to its mass center and relating this
to the resultant torque moment of gravitational forces acting
on constituent mass particles of the body. Orbital oscilla-
tions of the type just considered entail angular perturbations
@’ that must be included in calculation of moment of momen-
tum. The equation in vector form

dho/dt = M, (5)

is evaluated for small angular displacements «,8,y with
respect to principal inertia axes, these being shifted only
slightly from equilibrium orientation in space. In equilib-



