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Writing h = b — a, an approximate solution to this equa-
tion is

kh ~g? + (h*/8qirab) [8/3 + 4(n - I)2 - 1]

g = 1,2,3, . . . (16)

For an infinite plate of thickness h, a,b —> oo and kh = qir,
q = 1,2,3 . . ., which would be the plane-wave solution for an
orthotropic plate.

The forementioned approximate formulas (14) and (16)
have been checked by comparisons with the exact solutions,
and the results are found to be accurate within 5% for values
of d up to \.
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Introduction

LET /i(0 be a function of time which is defined and con-
tinuous and satisfies all hypotheses of the ergodic

theorem4 on — » ' < < < + °° . Choose a finite record, say
— T ^ t ^ + T, and let fi(t)" satisfy the quasi-ergodic
hypothesis3 on — T to -\-T. The purpose of this paper is to
deduce a relationship between error e and maximum time lag
rm in the digital computation of the autocorrelation function
of/i(0 over —T^t^T. It thus will be demonstrated that
the maximum time lag rm should not exceed 5 to 10% of the
total time record, as suggested by Blackman and Tukey.1
Details of the analysis that follows can be found in Ref. 2.

Analysis of the Problem

The unnormalized autocorrelation function of fi(t) can be
defined by the equation

An(r) lim - (1)

where r is the time lag.
If only a finite record is available, then AH (T) is approxi-

mated by

(2)

- r) (3)

A typical graph of F(t) is shown in Fig. 2.
To approximate digitally An (T) from Eq. (2), divide the

interval — T ^ t ^ T — T into K — m equispaced intervals,
where m is a positive integer such that

A typical graph of jfiOO and/i(£ + r) is shown in Fig. 1.
Define the integrand of Eq. (2) as

F(t) =

T = m(2T/K) (4)

Also note that each of the equispaced subintervals in Fig. 2 is
of length

2T/(K - m) 0 ^ m < K (5)
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Fig. 1 Graph of/i(t) arid/i(t -f r)
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Fig. 2 Graph of/i(t)/i(t + r)

Without loss of generality, define

m = [KB] o ^ e < i (6)
where [K6] means the greatest integer in K B.

The area A* under • F(t) over tt ^ t ^ ti+i can be described
by the inequality

Rearranging inequality (7) slightly and summing over — T
^ t ^ T - r gives

K-m-l
0 ^ E [At-

In inequality (8), let
K-m-l

K-m-l
(8)

- F(tQ)]

Then

S = F(tK-m) ~ (9)

Substitute Eqs. (5) and (9) into inequality (8), and then in-
troduce the factor I/IT to get the following inequality:

0
J_

2T
K-m-l

(10)

where F(t0) = F(-T) from Fig. 2.
Application of the fundamental theorem of integral calculus

to Eq. (10) will yield an integral expression for AH(T) on
— T^t^T — r. A measure of the error in the approxima-
tion of AH(T) is given by inequality (10). Thus

- m)}\ (11)

Let c be the maximum value of [F(tK-m) — F( — T)]\ for
all 0 ^ m < K, and then

e ^ c/(K - m) (12)

From Eq. (4)

e(r) $c/[K(l -T/2T)} (13)

Inequality (13) defines an error region as shown in Fig. 3.
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Fig. 3 Graph of
error e vs time lag T

From inequality (13), it is evident that for n < r-2

€(TI) < e(r2) (14)

Now if TI and r2 are the maximum values of T in two separate
autocorrelation computations for the same /i (t), inequality
(14) states that the greater the maximum time lag, the more
error is introduced into the final results.

Numerical Example

In conjunction with inequalities (13) and (14), the effect
of increasing the maximum time lag T now will be demon-
strated. Thus, let n be 10% of the total time record on
— T^t^T and r2 be 50% of the same time record. From
(13), for n = 0.277

\c/K
and for r2 = T

ie(70 $ c/K

From these inequalities, it follows that

and from (14)

e(0.2!F) < e(T) <: fc(0.2!T) (15)
Since the error introduced by letting the maximum time

lag T be ^ the data record can be almost twice the error in-
troduced by letting the maximum time lag T be T^ the data
record, it is concluded that the maximum lag in digitally
computing the autocorrelation function should not exceed
10% of the total data record.
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Introduction

A GRAVITATIONALLY oriented satellite executes free
rotational oscillations about its mass center at either of

two distinct frequencies determined by the mass dis'tribu-
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tion.1-2 Since both frequencies are not appreciably greater
than the orbital frequency, these are also comparable to the-
natural frequency of an orbital perturbation. A calculation
is presented which shows that the two types of motion,.
although not dynamically coupled, nevertheless do interact^
It is demonstrated that orbital perturbations serve to excite
the low-frequency mode of rotary oscillation and that, for
orbits of small eccentricity, this occurs at a near-resonant
condition.

Stability of Satellite Orbits

Circular orbits are shown in treatises on dynamics to be
stable for a class of inverse-power attraction laws which
includes Newtonian gravitation. It is shown here first that
periodic oscillation about the basic orbit also occurs for non-
circular orbits in an inverse-square force field, by considering a
small perturbation on an arbitrary "undisturbed" orbit. If
Ro(t) and &(t) denote polar coordinates that locate the mass
center of the satellite in its basic undisturbed orbit, and
rf(t), Q'(t) represent the corresponding perturbation quantities,
then the "linearized" equations of perturbed motion are

= (2G/R<**)rf

and
RQd')RQ =

(1)

(2)
where R0 and # satisfy the equations for the basic orbit, dots
denote time differentiation, G is the constant of earth gravita-
tion, and rj is an integration constant. Powers and products
of disturbance quantities have been neglected systematically
in Eqs. (1) and (2), so that these form a system of linear
ordinary differential equations. These govern motion of
satellite mass center and thus are unaffected by rotary oscilla-
tions about that point. Hence they can be analyzed by
themselves, and the characteristics of the motion are de-
termined by eliminating the angular variable 6', leaving

;*' + [2tf2 + (2E/RJ - (&?/R?)]r' = i^/Ro (3)
Only for circular orbits are the coefficient and right-hand side
both constants, and evaluation of the total energy of the
motion E then leads to the equation of the harmonic oscillator
at frequency equal to the orbital frequency. Thus, orbital
perturbations occur at precisely the rate of 1 cycle/orbit for
circular orbits. In the more general case, the coefficients
are not constant and the motion is not simple harmonic, but
the form of the equation shows that, for orbits of small
eccentricity, the "instantaneous" frequencies of orbital
perturbations

coo = [2tf2 + (2E/RQ - £oV#o2)]1/2 (4)

are not much different from 1 cycle/orbit. Equations (1)
and (2) indicate a 90° phase lag between r' and 0', which
will be seen below to have a counterpart in the rotary motions.
For simplicity, only circular orbits will be considered hence-
forth.

Rotational Oscillations about Mass Center (Librations)

Gravity-gradient satellite dynamic characteristics are
examined by computing the total moment of momentum of
the satellite with respect to its mass center and relating this
to the resultant torque moment of gravitational forces acting
on constituent mass particles of the body. Orbital oscilla-
tions of the type just considered entail angular perturbations
6' that must be included in calculation of moment of momen-
tum. The equation in vector form

dht/dt = Mo (5)
is evaluated for small angular displacements a,/3,y with
respect to principal inertia axes, these being shifted only
slightly from equilibrium orientation in space. In equilib-


